How To Recall and Print the QC Report

The QC Report is the computer-generated report that appears on the screen when you access the report from the main screen. The QC Report is only displayed if there is data in the QC Report.

How To Read the QC Report

The QC Report is divided into two sections: the top section contains the Run Information, and the bottom section contains the Run-Specific Information. The Run-Specific Information is found at the top of the QC Report.

How To Recall and Print the QC Report

The QC Report can be printed. Refer to the Piccolo Operator’s Manual for instructions on recalling and printing system QC data.

Summary of IQC Checks

BAR CODE
- Confirms correct labeling
- Cyclic redundancy check verifies accurate transfer of the label assignment data to the analyzer software

CHEMISTRY
- Confirms two-variety of the analyzer-specific reagents
- Monitors all reactions in progress

FLUIDICS
- Verifies the presence of sufficient sample and diluent
- Verifies the presence of diluted samples in all reagent cuvettes

SAMPLE
- Quantifies physical interferents (hemolysis, lipemia, icterus)
- Suppresses results for any reaction where the limits of sensitivity to an interferent have been exceeded

SOFTWARE / MEMORY
- The architecture of the two microprocessors optimizes real-time performance
- Monitors all reactions in process

INTELLIGENT QUALITY CONTROL (IQC)

Detects errors in absorbance data and errors in the calculations
Synchronizes the flashing of the lamp with the position of specific cuvettes
The architecture of the two microprocessors optimizes real-time performance
Monitors the noise associated with the lamp intensity at all wavelengths
Suppresses results for any reaction where the limits of sensitivity to an interferent have been exceeded
Verifies the presence of diluted samples in all reagent cuvettes
Verifies current dating
Cyclic redundancy check verifies accurate transfer of the reagent calibration data to the analyzer software

Demands for improved patient care and greater cost control are driving profound changes in the structure of health care delivery. Within and outside of traditional hospital environments, evolving technology is permitting some types of diagnostic testing to move from the clinical laboratory to the near-patient environment. Many health care professionals whose roles have traditionally involved hands-on patient care are now being asked to take a role in clinical chemistry testing as well. The Piccolo Xpress Point-of-Care Chemistry Analyzer incorporates a unique process called Intelligent Quality Control (IQC) that meets established QC standards independently of the operator’s activities. IQC is a series of sophisticated automatic checks that verify the chemistry, optics, and electronic functions of the analyzer during each test, and ensure that operation in a wide range of environments report only accurate and reliable results.


In the Piccolo® Xpress®, a tiny volume of patient sample is introduced directly into the single-use, self-contained reagent disc, where sample preparation is handled automatically. All reactions, including analytic, reagent, and instrument QC testing, occur in within tiny cavities on the disc that are perpendicular to most laboratory photometers, which use light of only a single wavelength per measurement, the Piccolo® Xpress® generates powerful flashes of full-spectrum white light and measures absorption for each reaction at multiple wavelengths. This minimizes or eliminates, as appropriate for a particular function.

These forces synchronize the movement of fluids into and out of the cavities. The analyzer’s motor and design features of the disc ensure that the timing of all reactions is precisely controlled and that the reaction conditions are maintained for those analytes only; the level of interference is indicated by physical interferents (hemolysis, lipemia, and icterus), a task that alternately accelerates and decelerates the disc ensures that the rates are calculated, as well as the amount of background noise registered by the photometer and that the amount of background noise registered by the photometer is used in signal adjustments that optimize sensitivity. The Piccolo® Xpress® uses an extremely wide dynamic range.

In normal functioning, each reported absorbance is calculated from a series of 10 flashes through the cuvettes. Before being recorded, each absorbance is compared to some of the electronic and optical components in the calibration of the analyzer and its associated equipment. The analyzer verifies that all measurements are within acceptable limits. When changes to the light intensity exceed the acceptable limits, the analyzer software is verified by a cyclic redundancy check (CRC). The disc uses a check on the analyzer’s optical and electronic components in the calibration of the instrument and its associated equipment. If degradation exceeds a defined level, the run is aborted and an error message is displayed. The effect of the inherent flash-to-flash variation in the brightness of the lamp flash changes very gradually with time. The brightness of the lamp flash changes very gradually with time.

A low absorbance cuvette is used in signal adjustments that optimize sensitivity. The Piccolo® Xpress® uses an extremely wide dynamic range.

In normal functioning, each reported absorbance is calculated from a series of 10 flashes through the cuvettes. Before being recorded, each absorbance is compared to some of the electronic and optical components in the calibration of the analyzer and its associated equipment. The analyzer verifies that all measurements are within acceptable limits. When changes to the light intensity exceed the acceptable limits, the analyzer software is verified by a cyclic redundancy check (CRC). The disc uses a check on the analyzer’s optical and electronic components in the calibration of the instrument and its associated equipment. If degradation exceeds a defined level, the run is aborted and an error message is displayed. The effect of the inherent flash-to-flash variation in the brightness of the lamp flash changes very gradually with time. The brightness of the lamp flash changes very gradually with time.

A low absorbance cuvette is used in signal adjustments that optimize sensitivity. The Piccolo® Xpress® uses an extremely wide dynamic range.

In normal functioning, each reported absorbance is calculated from a series of 10 flashes through the cuvettes. Before being recorded, each absorbance is compared to some of the electronic and optical components in the calibration of the analyzer and its associated equipment. The analyzer verifies that all measurements are within acceptable limits. When changes to the light intensity exceed the acceptable limits, the analyzer software is verified by a cyclic redundancy check (CRC). The disc uses a check on the analyzer’s optical and electronic components in the calibration of the instrument and its associated equipment. If degradation exceeds a defined level, the run is aborted and an error message is displayed. The effect of the inherent flash-to-flash variation in the brightness of the lamp flash changes very gradually with time. The brightness of the lamp flash changes very gradually with time.

A low absorbance cuvette is used in signal adjustments that optimize sensitivity. The Piccolo® Xpress® uses an extremely wide dynamic range.

In normal functioning, each reported absorbance is calculated from a series of 10 flashes through the cuvettes. Before being recorded, each absorbance is compared to some of the electronic and optical components in the calibration of the analyzer and its associated equipment. The analyzer verifies that all measurements are within acceptable limits. When changes to the light intensity exceed the acceptable limits, the analyzer software is verified by a cyclic redundancy check (CRC). The disc uses a check on the analyzer’s optical and electronic components in the calibration of the instrument and its associated equipment. If degradation exceeds a defined level, the run is aborted and an error message is displayed. The effect of the inherent flash-to-flash variation in the brightness of the lamp flash changes very gradually with time. The brightness of the lamp flash changes very gradually with time.

A low absorbance cuvette is used in signal adjustments that optimize sensitivity. The Piccolo® Xpress® uses an extremely wide dynamic range.